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ABSTRACT 

The present article deals with an improved estimator of normal mean which is 
obtained by considering single stage procedure with appropriate shrinkage weight 
function. Indeed two shrunken testimators of Huntsberger-type are proposed for the 

mean µ  of normal distribution when a prior estimate 
0

µ  of the mean µ  is available. 

The goodness of this procedure as a means of maximizing the relative efficiency is 

explained in this paper. The expressions for the bias mean squared error and relative 
efficiency of the proposed testimators are derived. The performances of the proposed 
testimators are compared with classical and existing testimators based on the criteria 
of biased ratio and relative efficiency to search for a ‘better’ estimator. 
 
Keywords: Normal distribution; Huntsberger-type shrinkage testimator; Preliminary 
test; Bias ratio; Relative efficiency. 

 

 

INTRODUCTION 

The model 

The normal distribution plays an important role in both the application and 

inferential statistics. In modeling applications, the normal curve is an 
excellent approximation to the frequency distributions of observations taken 

on a variety of variables and as a limiting form of various other distributions 

(Davison, (2003)). Many psychological measurements and physical 
phenomena can be approximated well by the normal distribution. In 

addition, there are many applications of the normal distribution in 

engineering. One application deals with analysis of items which exhibit 
failure due to wear, such as mechanical devices. Other applications are, the 

analysis of the variation of component dimensions in manufacturing, 

modeling global irradiation data, and the intensity of laser light, and so on.  

Indeed the wide application and occurrence of the normal distribution in life 
testing and reliability problems are a wonder. In the context of reliability 

problems and life testing, a number of failure time data have been examined 

(Bain and Engelharadt, (1991)) and it was shown that the normal distribution 
give quite a good fit for the most cases.   

 



Z. A. Al-Hemyari 

 

228 Malaysian Journal of Mathematical Sciences 

 

Incorporating a guess value, and PSE  

In many problems, the experimenter has some prior information regarding 

the value of µ   either due to past experiences or to his familiarity with the 

behavior of the population. However, in certain situations the prior 

information is available only in the form of an initial guess value (natural 

origin) 0µ  of .µ   In such a situation it is natural to start with an estimator  

X  of µ  and modify it by moving it  closer to 0µ , so that the resulting 

estimator, though perhaps biased, has smaller mean squared error than that 

of X  in some interval around 0µ . This method of constructing an estimator 

of µ  that incorporates the prior information 0µ  leads to what is known as a 

shrunken estimator. Consider the Huntsberger, (1955) type shrinkage 

estimator 

 

0 0{ ( )( ) },X Xϕµ ψ µ µ= − +ɶ                                          (1) 

 

where ( )(0 ( ) 1),X Xψ ψ≤ ≤  represents a weighting function specifying the 

degree of belief in 0 .µ   A number of authors (Goodman, (1953), Thompson, 

(1968a), Arnold, (1969) and Mehta and Srinivasan, (1971)) have tried to 

develop new s shrinkage estimators of the form (1) for special populations 

by choosing different weight functions. The relevance of such types of 
shrinkage estimators lies in the fact that, though perhaps they are biased, 

have smaller MSE than X in some interval around 0µ . Shrinkage estimators 

of the form (1) have the disadvantage that it necessarily uses the prior value 

in the construction of final estimators. However, it is not necessary that the 
prior value is close to true value. To employ this idea in estimation of the 

mean µ , a preliminary test is first conducted to check the closeness of  0µ  

to µ  before using it in a shrinkage estimator. Define   

 

0 0

1 0

( ), : ,
( )

1, : ,

X if H
X

if H

ϕ µ µ
ψ

µ µ

 =
= 

≠
     (2) 

 

where 0 ( ) 1.Xϕ≤ ≤ Thus, the preliminary shrinkage estimator (PSE) of µ  

corresponding to ( )Xψ  is given by, 

 

0 0
ˆ {[ ( )( ) ] [ ] },R R

X X I X Iµ ϕ µ µ= − + +       (3) 
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where RI  and 
R

I are respectively the indicator functions of the acceptance 

region R and the rejection region R . A number of other authors (Thompson, 
(1968a, 1968b), Davis and Arnold, (1970), Hirano, (1977),  Kambo et al., 

(1990), Singh et al., (2004), Singh and Saxena, (2005),  Lemmer, (2006), 

Al-Hemyari et al., (2009b), Al-Hemyari, (2009a, 2010)) have tried to 
develop new  shrinkage estimators of the form (3) for special populations by 

choosing different weight functions and R. In this paper two preliminary 

shrinkage estimators of Huntsberger-type for the mean µ  of normal 

distribution 2( , )N µ σ  when 2σ  is known or unknown are proposed, and the 

expressions for the bias, mean squared error, and relative efficiency are 

derived and studied numerically. The discussion regarding the comparisons 

with the earlier known results are made and the usefulness of these 
testimators under different situations is provided as conclusions from 

various numerical tables obtained from simulation results.  

 

 

TESTIMATOR 1µɶ  AND ITS PROPERTIES WITH KNOWN 2σ  

Let X  be normally distributed with unknown µ  and known 

variance 2σ . Assume that a prior estimate 
o

µ  about µ  is available from the 

past. The first proposed testimator is,  

 

1 {[µ =ɶ X −
2 2

0( ) /n b X
ae

µ σ− −
( X − 0µ )]

1R
I +[ ]X

1R
I }.     (4) 

                                                   

For this testimator we considered 1R  as the commonly used 

acceptance region of the hypothesis 0 0:H θ θ=  against the alternative 

1 0: .H θ θ≠  If α   is the level of significance of the test, then the preliminary 

test region 1R  is given by 

 

 1 1 / 2 / 2{ : ( ) [ , ]},R X T X L Uα α−= ∈      (5) 

 

where 2/1 α−l  and / 2Uα  are the lower and upper 100(α /2) percentile points 

of the statistic ( )T X  used for testing the above hypothesis. If the standard 

normal statistic ( )T X  is used, the region 1R  is given by:  

2 2
0[ ( ) / }

1 / 2 / 2[ , ], ( ) [1 ],
n b X

o o
R z z X a e

n n

µ σ
α α

σ σ
µ µ ϕ − −= − + = −   (6)                                 
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0, 0 1b a≥ ≤ ≤ , and / 2zα  is the upper 100( / 2)α  percentile point of the 

standard normal distribution. The bias expression of 1
~µ  is defined by, 

 

2 2
0

1

1 1

( ) / 2

0 0

2

( | ) ( )

((1 )( ) ) ( / , )

( / , ) ,

nb X

R

R

B E

ae X f X d X

X f X d X

µ σ

µ µ µ µ

µ µ µ σ

µ σ µ

− −

= −

= − − +

+ −

∫

∫

ɶ ɶ

   (7) 

 

where R  is the rejection region and 2( , )f X µ σ is the p.d.f. of .X   Simple 

calculations lead to 
 

2
1 /(2 1)

1 1 1 2 2 1 2 23/ 2
( | , ) ( ) [ 2 1 ( , ) ( , )] .

(2 1)

b b

o

ae
B R b J a b J a b

bn

λσ
µ µ λ

− + 
= − + + 

+ 
ɶ  (8) 

 

The mean squared error expression of 1
~µ  is defined by, 

 
2 2

0

1

( ) /2 2

1 1 1 0 0

2 2 2

( | , ) ( ) ((1 )( ) )

( / , ) ( ) ( / , ) .

nb X

R

R

MSE R E ae X

f X d X X f X d X

µ σµ µ µ µ µ µ µ

µ σ µ µ σ

− −= − = − − + −

+ −

∫

∫

ɶ ɶ

(9) 

 

After some algebraic manipulations, it can be easily shown that 
 

[
2

1

2
/(2 1)5 / 2

1 1 2 2 2
( | , ) 1 2 (2 1) (2 1) ( , )b bMSE R a b e b J a b

n

λσ
µ µ − +−

= − + +


ɶ  

]
2

12 /(4 1)2 2 5 / 2

1 1 2 2 1 2 2
(1 2 ) 2 1 ( , ) 2 ( , ) (4 1)

b b

o
b b J a b b J a b a b e

λλ λ − +−+ − + − + +  

]2

2 3 3 1 1 3 3 1 3 30
x (4 1) ( , ) 2 4 1 ( , ) ( , ) ,b J a b b J a b J a bλ λ


+ + + +  

           (10) 

 

where 
 

1 1 / 2 1 1 / 2 2 1 / 2 2 2 / 2

3 1 / 2 3 1 / 2 1 0

, , ( ) / 2 1, ( ) / 2 1,

( ) / 4 1, ( ) / 4 1, ( ) / ,

a z b z a z b b z b

a z b b z b n

α α α α

α α

λ λ λ λ

λ λ λ µ µ σ

= − = + = − + = + +

= − − = + − = −
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and 

2 /21
( , ) , 0, 1, 2, 1, 2.

2

j

j

b

i y

i j j

a

J a b y e dy i j
π

−= = =∫                      

                                 

For numerical computations we may use the relations: 
 

 ( )2 2

1( , ) exp( 2) exp( 2) 2 ,J a b a b π= − − −               (11) 

 

and 
 

( )2 2

2 0
( , ) ( , ) exp( 2) exp( 2) 2 .J a b J a b a b π= + − − −              (12) 

 

Remark 1: Choice of a 

It seems reasonable to select 
،
a’ that minimizes the

1
( | )MSE µ µɶ . Setting 

(
1 0

( / ) ( | )a MSE µ µ∂ ∂ ɶ ) to zero, we get, 

 

( )
2

1
5 / 2 /(2 1)(4 1)

1 2 2 2 1

2

1 2 2 1 0 2 2 2 3 3 1 1 3 3

2

1 0 3 3

(4 1) /(2 1) {[(2 1) ( , ) (1 2 )

2 1 ( , ) 2 ( , )] /[(4 1) ( , ) 2 4 1 ( , )

( , )]} (13)

b b b
a a b b e b J a b b

b J a b b J a b b J a b b J a b

J a b

λ λ

λ λ

λ

− + += = + + + + −

+ − + + +

+

 

 Since 

]
2
1

2

12

2
2 /(4 1)5/2 2

2 3 3 1 1 3 3 1 0 3 3

( | )

(4 1) (4 1) ( , ) 2 4 1 ( , ) ( , ) 0,
b b

MSE
a

b e b J a b b J a b J a b
n

λ

µ µ

σ
λ λ− +−

∂
=

∂

+ + + + + ≥


ɶ

 

it follows that the minimizing value of ]1,0[∈a  is given by:  
 

1

1 1

1

0 0,

0 1,

1 1.

if a

a a if a

if a

 ≤


= ≤ ≤


≥

ɶ                 (14) 

 

The efficiency of 1
~µ  relative to X  is defined by, 

 
2

1 1( | ) / ( | ) .Eff MSEµ µ σ µ µ=ɶ ɶ                  (15)                                        
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Remark 2: Some properties. 

It is easily seen that 1( | )B µ µɶ  is an odd function of 1λ , whereas 1( | )E n µɶ , 

1( | )MSE µ µɶ and 1( | )Eff µ µɶ  are all even functions of 1λ . Also 

1 1( | ) 1Eff asµ µ λ= → ±∞ɶ . 

Since 1lim ( | ) 0,
n

B µ µ
→∞

=ɶ  and 1lim ( | ) 0
n

MSE µ µ
→∞

=ɶ , 1µɶ  is a asymptotically 

unbiased and consistent estimator of µ . Also 1µɶ   dominates X  in large n  

and n  in the sense that    

1lim [ ( | ) ( )] 0.
n

MSE MSE Xµ µ
→∞

− ≤ɶ  

 

Remark 3: Special cases. 

It may be noted here, when ( ) , 0 1X c cϕ = ≤ ≤  is constant the equations 

(8), (10) & (15) agree with the result  of  Thompson, (1968a); when the 

hypothesis :
o o

H µ µ=  is accepted with probability one the same expression 

aggress with  the result of Mehta and Srinivasan, (1971);  also when 0,a =  

the same expression aggress with  the result of Hirano, (1977), and when 

( ) , 0 1,X c cϕ = ≤ ≤   if X R∈  and ( ) 1 ,X cϕ = −  if ,X R∉  the result agrees 

with the result of Al-Hemyari et al., (2009b). 

 
 

TESTIMATOR 2µɶ  WITH 2σ UNKNOWN 

When 2σ  is unknown, it is estimated by 
2 2

1

( ) /( 1)
n

i

i

s X X n
=

= − −∑ .  

Again taking region 2R  as the pretest region of size α  for testing 

:
o o

H µ µ=  against 1 :
o

H µ µ≠  in the testimator 1µɶ  defined in (3) and 

denoting the resulting estimator as 2µɶ . The testimator 2µɶ  employs the 

interval 2R  given by, 

 

2 / 2, 1 / 2 , 1/ , / ,
o n o n

R t s n t s nα αµ µ− −
 = − +                 (16)  

                                                                

where 
1/ 2, 1n

tα −  is the upper 100( / 2)α  percentile  point of the t distribution 

with 1n −  degrees of freedom. The expressions for bias and MSE and  are 

given respectively by: 
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1/(2 1)
* * * * 2 2 2

2 1 2 2 1 2 23/ 2

0

( | ) [ 2 1 ( , ) ( , )] ( | )
(2 1)

b b

o

ae
B b J a b J a b f s ds

bn

λσ
µ µ λ σ

∞ − +  
= − + + 

+  
∫ɶ (17)                                                                                                                          

{ 2 2
1

2
1

2

2
/(2 1)5/ 2 * *

2 2 2 1 1 2 2

1 0

2 /(4 1)2 * * 2 5/2 * * * *

1 0 2 2 2 3 3 1 1 3 3

2 * * 2 2 2

1 3 3

( | )

1 2 (2 1) [(2 1) ( , ) (1 2 ) 2 1 ( , )

2 ( , )] (4 1) [(4 1) ( , ) 2 4 1 ( , )

( , )]} ( | ) ,

b b

b b

o

MSE

a b e b J a b b b J a b
n

b J a b a b e b J a b b J a b

J a b f s ds

λ

λ

µ µ

σ
λ

λ λ

λ σ

∞
− +− ∗ ∗

− +−

=

− + + + − +

− + + + + +

+

∫

ɶ

 

where                                                           

* * *

3 1 / 2, 1 3 1 / 2, 2 1 / 2, 1

* * *1

2 1 / 2, 1 1 1 / 2, 1 1 1 / 2, 1

( ) / 4 1, ( ) / 4 1, (

) / 2 1, ( ) / 2 1, , ,

n n n

n n n

s s
a t b b t b a t x

ss s
x b b t b a t b t

α α α

α α α

λ λ λ
σ σ

λ λ λ
σ σ σ

− −

− − −

= − + = + + = −

+ = + + = − = +

  

and 2 2( | )f s σ is the p. d .f. of 2s . If 
o

µ µ= , the above expressions reduce 

to: 

2
( | ) 0,

o
B µ µ =ɶ                      (19)  

                                                                                                                                                                 

[

1

1 1

1

1

2 2

1 / 2, 1 13/ 2 3/ 2

2

/ 2, 1 / 2 2

/ 2, 1

/ 2
2

/ 2, 1

2
( | , ) 1 (1 )[ ] 4 ( / 2) /

(2 1) (4 1)

(4 1)
[ ( 1) (( 1) / 2) (1 ) ] 2 /

1 2

(4 1)1
( 1) (4 1) 1 }.

2 1

o n

n n

n

n

n

a a
MSE R a t n

n b b

t b n
n n n x x a t

n

t bn
n b

n

α

α

α

α

σ
µ µ α

π

π

−

−

−

−


= + − − − Γ

+ +

+  
− Γ − + + Γ 

−  

 +− 
− Γ + +    −   

ɶ

(20)

 

Remark 4: Choice of a 

Proceeding in the manner as in last section, we get the minimizing value of 
‘a’ as follows,       
 

[
( ) 1

2 2, 13 2

(1 )
2

22 1
n

n
a a t

b
α

α
−−

−  
= = − Γ 

 +
[ ( ) ( )

( ( ) ( )

1

2 2

2, 1

1
1 2 1

2

1 2 1 1 ) ]]
n

n

n
n b

t b x x nα

π

−

−

− 
− Γ + 

 

+ + −
( )

( )
1

2, 13 2

1
[ 2

24 1
n

n
t

b
α

α
−−

−  
+ Γ 

 +

( ) ( ) ( )2

2, 1

1
[( 1 4 1 1 4 1

2
n

n
n b x x t bαπ −

− 
− Γ + + + 

 
( )( )

/ 2

1 ]]
n

n −
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Since 

 

1

2 2

1 / 2, 12 3/ 2

/ 22

/ 2, 1

2(1 ) 1
( | , ) 4 /[ ( 1) (4 1)

(4 1) 2 2

(4 1)
1 } 0, (21)

1

Y o n

n

n

n n
MSE R t n b

a n b

t b

n

α

α

σ α
µ µ π−

−

∂ − −   
= + Γ − Γ +    

∂ +    

 +
+ >  − 

ɶ

 
 

it follows that the minimizing value of [0,1]a ∈  is given by: 

2

2 2

2

0 0

0 1

1 1

if a

a a if a

if a

≤


= ≤ ≤
 ≥

ɶ                 (22) 

 

The relative efficiency of 2µɶ  defined by, 
2

2 2 0( | ) / ( | ).Eff MSEµ µ σ µ µ=ɶ ɶ                   (23) 

                            
                

SIMULATION AND NUMERICAL RESULTS 

To observe the behavior of the proposed testimators, and to give 

useful comparison between the proposed, classical, and existing estimators, 
the computations of relative efficiency,  bias ratio, were done for the 

testimators 1µɶ  and 2µɶ . Specifically, for testimator 1
~µ  these computations 

were done for 0.01, 0.02, 0.05, 0.01, 0.015,α =  0.001, 0.01, 0.02,b =  

and 1 0.0(0.1) 4,λ =  whereas for 2µɶ  this was done for 

0.01, 0.02, 0.05,α = 0.001, 0.01,b = 4(4)20n =  and in order to compare 

our testimators 1µɶ  and 2µɶ  with those of  Al-Hemyari et al.,(2009), Saxena 

and Singh, (2006), Kambo et al., (1992),  Hirano, (1977), Davis and  

Arnold, (1970), Arnold, (1969) and  Thompson, (1968a). Some of these 
computations are given in Tables 1 to 3. We make the following 

observations from tables of computations presented in this paper: 
 

i)  The testimator 1µɶ  is biased (see “Table 2”). The bias ratio is reasonably 

small if the prior point estimate
o

µ  doesn’t deviate too much from the 

true value µ .      
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ii)  It is observed that, for 10 3λ≤ ≤ , 1µɶ  has smaller mean squared error than 

the classical estimator X . Thus 1µɶ  may be used to improve the efficiency 

if 1λ  belong to the region 10 3λ≤ ≤ . 

 

iii) For fixed n and α , the relative efficiency of 1µɶ  is increases with 

decreasing value of .b  

 
iv) As expected our computations (see “Table1”) showed that the relative 

efficiency of 1µɶ  decreases with size α  of the pretest region, i.e. 0.01α =  

gives higher relative efficiency than for other values of α . 

 

v) For fixed ,b  and α , the relative efficiency of 1
~µ  is maximum 

when 01 ≅λ , and decreases with increasing value of .1λ  

 

v) For any fixed α  and ,b  the relative efficiency is a decreasing function of 

n  when .01 ≅λ   

 

xi) The behavioural pattern of testimator 2
~µ  is similar to that of 1

~µ  as for 

relative efficiency, and bias ratio are concerned (see “Table 3”). 
 

 

TABLE 1: Showing 
1

( | )Eff µ µɶ when  0.001,0.01, 0.01,0.05,0.1,0.135,b α= =  

and 0.0(0.1)2(1)3.λ =  

 

b α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

0.001 

0.01 8.643 7.352 6.644 6.135 5.700 5.377 4.627 

0.05 6.554 5.399 4.937 4.239 3.923 3.663 3.100 

0.1 4.893 4.503 3.847 3.893 3.185 2.964 2.700 

0.135 3.776 3.783 2.655 2.444 2.321 2.196 2.092 

0.01 

0.01 6.530 6.087 5.724 5.182 4.693 4.235 3.813 

0.05 5.527 5.114 4.707 4.163 3.864 3.522 2.932 

0.1 3.973 3.602 3.164 2.953 2.751 2.432 2.266 

0.135 2.915 2.794 2.725 2.635 2.492 2.297 2.150 
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TABLE 1 (continued): Showing 
1

( | )Eff µ µɶ when  0.001,0.01, 0.01,0.05,0.1,0.135,b α= =  

and 0.0(0.1)2(1)3.λ =  

 

 
 

TABLE 2: Showing 
1

( | )B µ µɶ when  0.001,0.01, 0.01,0.05,0.1,0.135,b α= = and 

0.0(0.1)2(1)3.λ =  

 

 

b α 0.7 0.8 0.9 1.0 1.5 2.0 2.5 3.0 

0.001 

0.01 4.200 3.856 3.426 2.937 1.909 1.371 1.099 1.025 

0.05 2.803 2.631 2.327 2.084 1.714 1.306 1.024 1.005 

0.1 2.724 2.573 1.985 1.765 1.499 1.214 1.019 1.002 

0.135 1.931 1.893 1.802 1.713 1.225 1.153 0.972 1.000 

0.01 

 

0.01 3.503 3.164 2.735 2.595 1.812 1.252 1.083 1.023 

0.05 2.710 2.494 2.202 1.975 1.645 1.124 1.022 1.002 

0.1 2.073 1.990 1.854 1.673 1.588 1.063 1.016 1.000 

0.135 1.908 1.796 1.633 1.432 1.213 1.048 1.003 0.957 

b α 0.0 0.1 0.2 0.3 0.4 0.5 0.6 

0.001 

0.01 0.000 -0.049 -0.115 -0.166 -0.202 -0.222 -0.228 

0.05 0.000 -0.036 -0.102 -0.160 -0.194 -0.219 -0.224 

0.1 0.000 -0.022 -0.085 -0.143 -0.172 -0.185 -0.195 

0.135 0.000 -0.015 -0.0537 -0.115 -0.148 -0.162 -0.173 

0.01 

0.01 0.000 -0.040 -0.114 -0.160 -0.201 -0.221 -0.227 

0.05 0.000 -0.035 -0.101 -0.158 -0.192 -0.210 -0.224 

0.1 0.000 -0.022 -0.083 -0.141 -0.171 -0.185 -0.194 

0.135 0.000 -0.014 -0.052 -0.114 -0.140 -0.162 -0.173 
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TABLE 2 (continued): Showing 
1

( | )B µ µɶ when  

0.001,0.01, 0.01,0.05,0.1,0.135,b α= = and 0.0(0.1)2(1)3.λ =  

 

 
TABLE 3: Showing 

2
( | )Eff µ µɶ when  0.001,0.01, 0.01,0.05,0.1,0.135,b α= =  

and 0.0.λ =  

 

 

b α 0.7 0.8 0.9 1.0 1.5 2.0 2.5 3.0 

0.001 

 

0.01 -0.232 -0.233 -0.245 -0.251 -0.294 -0.326 -0.385 -0.431 

0.05 -0.226 -0.229 -0.235 -0.238 -0.263 -0.308 -0.362 -0.410 

0.1 -0.198 -0.204 -0.217 -0.223 -0.256 -0.294 -0.333 -0.395 

0.135 -0.188 -0.192 -0.197 -0.198 -0.236 -0.277 -0.320 -0.376 

0.01 

0.01 -0.230 -0.232 -0.243 -0.245 -0.292 -0.324 -0.383 -0.429 

0.05 -0.221 -0.224 -0.253 -0.236 -0.261 -0.303 -0.360 -0.407 

0.1 -0.197 -0.203 -0.216 -0.222 -0.255 -0.293 -0.331 -0.394 

0.135 -0.187 -0.191 -0.195 -0.197 -0.235 -0.276 -0.320 -0.374 

 

b 

 

n 

α 

0.01 0.05 0.1 0.135 

0.001 

4 14.782 10.304 7.562 5.315 

8 17.304 12.709 10.838 7.823 

12 17.913 14.248 12.278 8.935 

16 18.310 15.261 14.464 9.673 

20 18.582 15.855 13.451 11.138 

0.01 

4 14.643 10.245 7.534 5.225 

8 17.107 12.611 10.769 7.773 

12 17.700 14.278 12.185 8.862 

16 18.085 15.111 13.347 9.520 

20 18.349 15.690 14.314 11.028 
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CONCLUSION 

Testimator 1µɶ  is better than that of, Saxena and Singh, (2006), 

Kambo et al., (1992),  Hirano, (1977), Davis and  Arnold, (1970), Arnold, 

(1969) and  Thompson, (1968a)  both in terms of higher relative efficiency 

and boarder range of 1λ  for which efficiency is greater than unity and better 

than Al-Hemyari et al., (2009b) if 1 0.4λ ≥ . Also, on comparing Table 3 (for 

unknown 2σ case) with the corresponding results of Saxena and Singh, 

(2006), Hirano, (1977), Davis and Arnold, (1970), Arnold, (1969) and 

Thompson, (1968a), it has been observed that 2µɶ  is also much better in 

terms of higher relative efficiency than the existing testimators with 

unknown 2 .σ  
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